Naswa Jovita Ramadhani
XI IPS 1
Nama : Naswa Jovita Ramadhani
Kelas : XI IPS 1
Absen : 24
Apa Itu Integral Tak Tentu?
Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya.
Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral.
Sebelum ke rumus integral tak tentu, elo perlu paham konsep turunan nih. Gue kasih bayangin dikit tentang turunan secara umum.
y= X3 Turunan dari soal ini berapa?
dydx = 3×2 Setelah diturunkan seperti ini, lalu dikali silang.
dy = 3×2 dx
d(X3) = 3×2 dx Bisa dilihat ya, y diganti dengan X3
Nah, dari sini bisa kita simpulkan ya cara mencari turunan bentuknya akan seperti ini nih.
Turunan dari X2 akan menjadi d(X2) = 2x dx
Oke, konsep turunan udah ingat lanjut ke materi integral tak tentu lagi.
Coba deh elo perhatikan antara turunan dan integral di bawah ini.
Turunan:
Sekarang kita balik, dikalikan silang ya:
df(x) = f’(x)dx
Kita tambahkan aja lambang integral (∫), menjadi:
∫df(x) = ∫f’(x)dx
∫f’(x)dx = f(x)+C
Pengertian integral tak tentu (indefinite integral) merupakan suatu fungsi baru yang punya turunan dari fungsi aslinya dan fungsi tersebut belum memiliki nilai pasti. Itulah mengapa dalam integral tak tentu ada konstanta (C).
Rumus Integral Tak Tentu
Oke, kita tahu kalau integral tak tentu berarti nilai atau batasannya belum pasti, sehingga ada nilai konstanta di dalamnya. Sekarang, mari kita definisikan seperti apa sih rumus dasar integral tak tentu? Perhatikan rumus di bawah ini.
Rumus Integral tak tentu:
Supaya lebih mudah dipahami, gue langsung cemplung angka-angkanya ke rumus di atas ya.
Nah, jelas ya sekarang? Jadi, elo hanya perlu memasukkan angka-angkanya ke dalam template rumus di atas. Sampai sini udah mulai paham dikit-dikit lah ya, tapi sebelum buru-buru ke contoh soal integral tak tentu, simak dulu sifat-sifatnya.
Sifat-Sifat Integral Tak Tentu
Pengertian udah tahu, rumus juga elo udah tahu, kurang lengkap rasanya kalau kita gak mengenal sifat-sifat dari integral tak tentu. Berikut adalah sifat-sifat integral tak tentu:
Contoh soal Integral:
Soal 1:
Dalam soal ini, batas atas adalah 1 dan batas bawah -2. Tahap pertama yang perlu kita lakukan adalah melakukan integral fungsi 3x2 + 5x + 2 menjadi seperti di bawah ini.
Setelah kita mendapatkan bentuk integral dari fungsi tersebut, kita dapat memasukkan nilai batas atas dan bawah ke dalam fungsi tersebut lalu mengurangkannya menjadi seperti berikut.
Hasil dari integral tersebut adalah 27,5.
Soal 2:
Diketahui turunan y = f(x) adalah = f ‘(x) = 2x + 3
Jika kurva y = f(x) lewat titik (1, 6), maka tentukan persamaan kurva tersebut.
Jawab:
f ‘(x) = 2x + 3.
y = f(x) = ʃ (2x + 3) dx = x2 + 3x + c.
Kurva melalui titik (1, 6), berarti f(1) = 6 hingga dapat di tentukan nilai c, yakni 1 + 3 + c = 6 ↔ c = 2.
Maka, persamaan kurva yang dimaksud yaitu:
y = f(x) = x2 + 3x + 2.
Soal 3:
Carilah hasil dari ʃ21 6x2 dx !
Pembahasan:
Jadi, hasil dari ʃ21 6x2 dx adalah 14.
Teknik Pengintegralan Metode Subtitusi
Dalam menyelesaikan masalah integral tak tentu, masalah yang ada harus dibawa ke salah satu atau beberapa bentuk integrand yang telah dikenal. Dengan memasukkan atau mensubstitusi variabel baru yang tepat sehingga bentuk yang tadinya belum dikenal primitifnya berubah menjadi bentuk yang telah dikenal.
Contoh Soal Integral Beserta Jawaban dan Pembahasannya
1) Hitunglah integral dari 4x3 – 3x2 + 2x – 1 !
2. Tentukan integral dari (x – 2)(2x + 1) !
3. Diketahui fungsi y = f(x) memiliki f ‘(x) = 4x + 6. Misal kurva y = f(x) melalui titik (2, 8). Tentukan persamaan kurva tersebut.
DAFTAR PUSTAKA:
•https://www.zenius.net/blog/integral-tak-tentu
•https://www.seputarpengetahuan.co.id/2020/05/integral-tak-tentu.html
•https://gurubelajarku.com/contoh-soal-integral/
Titik stasioner disebut juga titik kritis, titik ekstrim, atau titik balik. Titik stasioner merupakan sebuah titik pada kurva dengan gradien dari garis singgung kurva bernilai 0 (nol).
Jika fungsi f(x) kontinu dan terdiferensial, maka f(a) dikatakan NILAI STASIONER dari f(x) jika dan hanya jika f’(a)=0.
4. Nilai maksimum dan minimum fungsi
Sebelum menentukan nilai maksimum dan minimum, Sobat Pintar harus tahu cara menentukan titik maksimum dan minimum terlebih dahulu.
Titik maksimum atau minimum suatu fungsi f(x) pada interval [a,b] dapat ditentukan dengan langkah-langkah berikut:
1). Penuhi syarat nilai stasioner, yaitu f’(a) = 0 dan f’(b) = 0
2). Tentukan jenis stasionernya (titik maksimum, titik belok, atau titik minimum) dengan menggunakan turunan kedua fungsi tersebut, yaitu:
- Jika f’’(a) < 0 maka f(a) adalah nilai balik maksimum fungsi f
- Jika f’’(a) > 0 maka f(a) adalah nilai balik minimum fungsi f
- Jika f’’(a) = 0 maka f(a) bukan nilai ekstrim fungsi f
3). Substitusi nilai variabelnya ke fungsi awal, sehingga diperoleh nilai maksimum atau minimumnya.
Nilai maksimum atau minimum suatu fungsi yang kontinu dan diferensiabel pada setiap titik di interval [a,b] dapat terjadi pada:
- Titik stasioner yang berada pada interval [a,b]
- Titik ujung interval
Dalam menentukan nilai maksimum atau minimum suatu fungsi dapat dilakukan melalui langkah-langkah berikut:
1). Menentukan titik stasioner pada fungsi f(x) yang berada pada interval [a,b]
2). Menentukan nilai fungsi pada ujung interval, yaitu f(a) dan f(b)
3). Membandingkan nilai fungsi pada langkah 1 dan 2. Nilai yang terbesar adalah nilai maksimum, sedangkan nilai terkecil adalah nilai minimum
5. Kecepatan dan percepatan benda
Wah, nggak nyangka ya, ternyata turunan juga digunakan dalam rumus Fisika yang sering kita jumpai, yaitu kecepatan dan percepatan.
Jika diketahui sebuah benda bergerak menempuh jarak s = f(t), maka kecepatan dan percepatan benda tersebut dapat dirumuskan sebagai berikut:
- Kecepatan benda saat t detik (turunan pertama). Rumus turunan pertama yaitu:
Nama : Naswa Jovita Ramadhani
Kelas : XI IPS 1
Absen: 24
Sub bab:
a. Limit fungsi aljabar.
b. Teorema limit.
c. Limit tak tentu.
a. Limit Fungsi Aljabar
Pada dasarnya, limit adalah suatu nilai yang menggunakan pendekatan fungsi ketika hendak mendekati nilai tertentu. Singkatnya, limit ini dianggap sebagai nilai yang menuju suatu batas. Disebut sebagai “batas” karena memang ‘dekat’ tetapi tidak bisa dicapai. Misalkan f adalah fungsi yang terdefinisi pada interval tertentu yang memuat a, kecuali di a itu sendiri, sedangkan L adalah suatu bilangan riil. Maka fungsi f dapat dikatakan memiliki limit L untuk x mendekati a, sehingga ditulis
Namun, hanya jika untuk setiap bilangan kecil ε > 0 terdapat bilangan δ > 0 sedemikian rupa sehingga jika 0 < |x-a| <δ maka |f(x)-L| <ε. Pernyataan tersebut dinamakan definisi limit secara umum.
Rumus Limit
Dalam ilmu matematika, konsep limit ini ditulis berupa:
Maksudnya, apabila x mendekati a tetapi x tidak sama dengan a, maka f(x) akan mendekati L. Pendekatan x ke a ini dapat dilihat dari dua sisi, yakni sisi kiri dan sisi kanan. Nah, dengan kata lain bahwa x juga dapat mendekati dari arah kiri dan arah kanan sehingga nantinya akan menghasilkan limit kiri dan limit kanan.
Maka dari itu, diperolehlah pernyataan bahwa:
0 <|x-p|<δ⇔|f(x) – L|ε
Maksudnya, suatu fungsi dapat dikatakan memiliki limit apabila antara limit kiri dan limit kanan juga mempunyai besar nilai yang sama. Apabila limit kiri dan limit kanan tidak sama, maka nilai limitnya juga tidak akan ada.
Sifat Fungsi Limit Aljabar
Apabila n adalah bilangan bulat positif, k adalah konstanta, f dan g adalah fungsi yang mempunyai limit di c, maka sifat-sifatnya akan berupa:
b.Teorema Limit
Limit dalam bahasa umum bermakna batas.
Definisi dari limit ini menyatakan bahwa suatu fungsi f(x) akan mendekati nilai tertentu jika x mendekati nilai tertentu.
Pendekatan ini terbatas antara dua bilangan positif yang sangat kecil yang disebut sebagai epsilon dan delta.
Hubungan ke-2 bilangan positif kecil ini terangkum dalam definisi limit.
Limit 0/0
Bentuk 0/0 kemungkinan timbul dalam
ketika kita menemukan bentuk seperti itu coba untuk sederhanakan fungsi tersebut.
Jika itu bentuk persamaan kuadrat kita bisa coba memfaktorkan atau dengan cara asosiasi, dan jangan lupa aturan a2-b2 = (a+b) (a-b).
Berikut adalah contohnya :
Limit ∞/∞
Bentuk limit ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti :
Contoh:
Rumus cepat limit bentuk ∞/∞
•Jika m<n maka L = 0
•Jika m=n maka L = a/p
•Jika m>n maka L = ∞
Limit (∞-∞)
Bentuk (∞-∞) sering sekali muncul pada saat ujian nasional.
Bentuk soalnya sangat beragam. Namun, penyelesaiannya tidak jauh dari penyederhanaan.
Contoh:
Rumus Cepat limit tak hingga
Rumus cepat mengerjakan limit tak hingga yang pertama dapat digunakan untuk bentuk soal limit tak hingga pada bentuk pecahan.
Untuk memperoleh nilai limit tak hingga bentuk pecahan kita hanya perlu memperhatikan pangkat tertinggi dari masing-masing pembilang dan penyebut.
Ada 3 kemungkinan yang dapat saja terjadi:
1. pangkat tertinggi pembilang lebih kecil dari pangkat tertinggi penyebut.
2. pangkat tertinggi pembilang sama dengan pangkat tertinggi penyebut.
3. pangkat tertinggi pembilang lebih tinggi dari pangkat tertinggi penyebut.
Rumus ke-3 nilai limit tak terhingga bentuk pecahan tersebut dapat dilihat pada persamaan dibawah ini.
Naswa Jovita Ramadhani XI IPS 1