Rabu, 20 Juli 2022

Transformasi

 Nama : Naswa Jovita Ramadhani

Kelas   : XI IPS 1

Absen : 23

TRANSFORMASI


Pengertian Transformasi Geometri

Sebelum mengetahui pengertian dari transformasi geometri. Kita jabarkan lebih dulu apa itu arti transformasi dan apa itu geometri. Transformasi berarti perubahan sebuah struktur menjadi bertambah, berkurang atau tertata kembali unsurnya. Sedangkan geometri berarti cabang matematika yang menjelaskan soal sifat garis, sudut, bidang, dan ruang.

Berdasarkan dua definisi tersebut transformasi geometri dapat disimpulkan sebagai perubahan bentuk dari sebuah garis, sudut, ruang, dan bidang.

Dalam kehidupan sehari-hari, transformasi geometri ini biasanya dimanfaatkan untuk pembuatan karya-karya seni dan desain arsitektur.

Jenis-jenis Transformasi Geometri

Transformasi geometri itu sendiri terdiri dari empat jenis, yaitu translasi, rotasi, refleks, dan dilatasi.

Berikut adalah pemaparan lengkap masing-masing jenis transformasi geometri:

1. Translasi (Pergeseran)

Translasi atau pergeseran merupakan jenis dari transformasi geometri di mana terjadi perpindahan atau pergeseran dari suatu titik ke arah tertentu di dalam sebuah garis lurus bidang datar. Akibatnya, setiap bidang yang ada di garis lurus tersebut juga akan digeser dengan arah dan jarak tertentu.

Translasi pada dasarnya hanya mengubah posisi, bukan bentuk dan ukuran dari bidangnya.

Contoh sederhana dari translasi adalah peristiwa yang terjadi di perosotan. Dimana orang yang sama dengan sebuah bidang berpindah posisi dari titik awal (awal perosotan) dan titik akhir (ujung perosotan). Contoh lainnya adalah kendaraan yang berjalan di jalan lurus, dari kejadian itu bisa dilihat bahwa kendaraan yang merupakan objek tidak mengalami perubahan ukuran tetapi hanya berpindah tempat.

Rumus dari translasi itu sendiri adalah:

(x’,y’) = (a,b) + (x,y)

Keterangan:

x’, y’ = titik bayangan

x,y = titik asal

a,b = vektor translasi

Contoh soal transformasi geometri jenis translasi

Tentukan titik bayangan jika titik A adalah (2, 4) dan ditranslasikan menjadi (6, 3)

Jawab:

(x’, y’) = (x +a, y+b)

(x’, y’) = (2+6, 4+3)

(x’, y’) = (8, 7)

Maka titik bayangannya ada di (8, 7)


2. Rotasi (Perputaran)

Rotasi atau juga dikenal dengan perputaran dalam transformasi geometri sesuai dengan namanya berarti sebuah perputaran yang ditentukan oleh titik pusat rotasi, arah rotasi, dan juga besar dari sudut rotasi. Prinsipnya adalah memutar terhadap sudut dan titik pusat yang memiliki jarak yang sama dengan titik yang diputar.

Karena hanya berputar, maka transformasi ini tidak mengubah bentuk atau ukuran dari sebuah bidang.

Contoh sederhananya adalah cara kerja dari bianglala di mana lingkaran memutari titik tengah. Contoh lainnya adalah dalam gangsing. Cara kerja gangsing nyaris sama dengan bianglala karena berputar mengitari titik tengah.

Ada beberapa Rumus dari rotasi, yaitu:

Rotasi 90 derajat dengan pusat (a, b): (x,y) maka (-y + a + b, x – a + b)

Rotasi 180 derajat dengan pusat (a,b) : (x,y) maka (-x -2a, -y +2b)

Rotasi sebesar -90 derajat dengan pusat (a, b) : (x, y) maka (y – b + a, -x + a + b)

Rotasi sebesar 90 derajat dengan pusat (0, 0) : (x, y) maka (-y,x)

Rotasi 180 derajat dengan pusat (0,0) : (x, y) maka (-x, -y)

Rotasi sebesar -90 derajat dengan pusat (0,0) : (x, y) maka (y, -x)

Contoh soal transformasi geometri jenis rotasi

Sebuah titik A (3,2) dirotasikan terhadap titik O (0,0) sejauh 90 derajat searah dengan jarum jam. Tentukanlah bayangan dari titik A.

Jawab:

(x’, y’) = (cos90o sin 90o, –sin 90o cos 90o) (3,2)

(x’, y’) = (0 1 , -1 0) (3,2)

(x’, y’) = (-2,3)


3. Refleksi (Pencerminan)

Refleksi atau pencerminan dalam transformasi geometri berarti perubahan dengan memindahkan titik dengan sifat dari suatu cermin datar. Ada dua sifat yang dimiliki dalam transformasi refleksi. Pertama adalah jarak titik ke cermin sama dengan jarak bayangan titik ke cermin. Kedua adalah geometri yang dicerminkan saling berhadapan satu sama lain.

Contoh sederhana dari refleksi ini tentunya adalah ketika kita sedang bercermin.

Rumus umum dari refleksi antara lain:

Refleksi terhadap sumbu -x : (x,y) maka (x, -y)

Refleksi terhadap sumbu -y : (x,y) maka (-x, y)

Refleksi terhadap garis y = x : (x, y) maka (y, x)

Refleksi terhadap garis y = -x : (x, y) maka (-y, -x)

Refleksi terhadap garis x = h : (x, y) maka (2h, -x,y)

Refleksi terhadap garis y = K : (x. y) maka (x, 2k – y)

Contoh soal transformasi geometri jenis refleksi

Tentukanlah koordinat bayangan dari titik A jika Titik A (4, -2) dicerminkan terhadap sumbu x.

Jawab:

A : (a,b) maka A’ (a, -b)

Maka:

A (4, -2) maka A’ (-4, -2)


4. Dilatasi (Perkalian)

Dilatasi merupakan transformasi atau perubahan ukuran dari sebuah objek. Dalam dilatasi terdapat dua konsep, yaitu titik dan faktor dari dilatasi.

Titik dari dilatasi menentukan posisi dari dilatasi. Titik ini menjadi tempat pertemuan dari semua garis lurus yang menghubungkan antara titik dalam suatu bangunan ke titik hasil dilatasi.

Sedangkan faktor dilatasi adalah faktor perkalian dari suatu bangun yang sudah didilatasikan.


Contoh sederhana dari dilatasi adalah miniatur. Miniatur biasanya dalam bentuk mainan, seperti mobil-mobilan. Mainan merupakan pengecilan dari sebuah objek besar. Contoh lainnya adalah ketika kita mencetak sebuah foto. Foto tersebut bisa dicetak dengan ukuran-ukuran tertentu tetapi tidak mengubah bentuk dari foto tersebut, mulai dari 2×3, 3×4, sampai 4×6 fotonya tetap sama, hanya ukurannya yang berbeda.


Rumus umum dari dilatasi antara lain:

Dilatasi dengan pusat (0, 0) dan faktor skala k : (x, y) maka (kx, ky)

Dilatasi dengan pusat (0, 0) dan faktor skala k : (x, y) maka (kx = k(x-a) + a, (k(y-b) + b))





daftar pustaka: https://www.detik.com/edu/detikpedia/d-5838932/transformasi-geometri-jenis-jenis-sifat-dan-rumusnya

Determinan & invers matriks

 Nama : Naswa Jovita Ramadhani

Kelas   : XI IPS 1

Absen : 23

DETERMINAN & INVERS MATRIKS 


Determinan dan Invers suatu matrikssangat berguna dalam penerapan matriks. Salah satunya untuk menyelesaikan sistem persamaan linear yang bisa kita selesaikan baik menggunakan metode determinan atau metode invers. Metode matriks ini kita pilih karena secara komputasi akan mudah diterapkan, hal ini terjadi karena perhitungan determinan dan invers berlaku secara sistematis dan pasti. 

Determinan Matriks 

         Suatu Matriks mempunyai determinan jika dan hanya jika matriks tersebut adalah matriks persegi. Untuk lebih jelasnya mengenai matriks persegi, sobat bisa baca materi "jenis - jenis matriks" . Determinan matriks A bisa ditulis det(A) atau |A|. 

Determinan matriks 
Misalkan matriks  
det(A) = |A| = 
Untuk menentukan determinan matriks dapat menggunakan cara Sarrus yaitu dua kolom pertama dipindahkan ke sebelah kanan matriksnya 
Misalkan matriks  
determinan matriks A adalah : 
 Catatan : Metode Sarrus hanya bisa digunakan untuk matriks  saja. Untuk matriks dengan ukuran yang lebih besar, bisa mengggunakan Metode Kofaktor . Metode kofaktor ini bisa digunakan untuk menentukan determinan semua ukuran matriks persegi. 


Contoh :  
Tentukan nilai determinan dari matriks-matriks berikut : 
 dan 
Penyelesaian : 
*). determinan matriks A , 
 
*). determinan matriks B , 


Determinan matriks menggunakan Metode Kofaktor 

         Metode kofaktor merupakan metode umum yang dapat digunakan untuk menentukan determinan dan invers suatu matriks. Sebelum menentukan kofaktornya, kita harus menentukan sub matriksnya atau minornya terlebih dahulu. 

Pengertian Minor suatu matriks
Minor suatu matriks A dilambangkan dengan  adalah matriks bagian dari A yang diperoleh dengan cara menghilangkan elemen-elemennya pada baris ke- dan elemen-elemen pada kolom ke-.

Misalkan matriks  
Adapun Minor matriks A pada baris satu : 
  dan  merupakan submatriks (minor) hasil ekspansi baris ke-1 dari matriks A. 
Pengertian kofaktor suatu matriks
Kofaktor suatu elemen baris ke- dan kolom ke- dari matriks A dilambangkan dengan  . Bentuk menyatakan determinan dari minor  . Untuk menentukan nilai determinan matriks A dengan metode kofaktor cukup mengambil satu ekspansi saja, misalkan ekspansi baris ke-1. 

Determinan matriks A berdasarkan ekspansi baris ke-1
 






Catatan : menentukan determinan dengan metode kofaktor dapat menggukanan sembarang ekspansi, misalkan ekspansi baris ke-1, atau baris ke-2, atau baris ke-3, atau bisa juga menggunakan ekspansi kolom ke-1, atau kolom ke-2 atau kolom ke-3. 

Contoh : Tentukan determinan matriks  
Penyelesaian : metode kofaktor berdasarkan ekspansi baris ke-1 
*). Menentukan minor baris ke-1 
*). Menentukan kofaktor ekspansi baris ke-1 



*). Menentukan determinan ekspansi baris ke-1 
 
Jadi determinan matriks B adalah 19. 

Invers Matriks 
         Invers suatu matriks dilambangkan  ,  melambangkan invers dari matriks A. Secara umum hanya matriks persegi yang mempunyai invers. Berikut penjelasannya tentang invers. 

Invers matriks 
Misalkan matriks  
det(A) = |A| =   
invers matriks A adalah 
Contoh : 
Tentukan invers dari matriks  ? 
Penyelesaian : 
*). Determinan matriks A :  
*). Invers matriks A : 

Jadi, invers matriks A adalah  

Invers matriks  dengan metode kofaktor
Secara umum, invers suatu matriks misalkan matriks A adalah 
                    
 artinya adjoin dari matriks A yang diperoleh dengan cara mentranspose matriks kofaktor.  
Misalkan matriks kofaktornya :   
dengan  
maka adjoin matriks A adalah  . 
Menentukan invers semacam ini disebut menggunakan metode kofaktor.
Catatan : 
Rumus invers matriks A adalah  , dari rumus ini diperoleh : 
*). Jika  (determinan = 0) , maka matriks tidak punya invers (disebut matriks singular) 
*). Jika  (determinan  0) , maka matriks punya invers (disebut matriks non singular) 

Contoh : 
Tentukan invers dari matriks  ?  
Penyelesaian : 
*). Menentukan determinan matriks A  
*). Menentukan Minor matriks A 

Remedial PAS

 Naswa Jovita Ramadhani XI IPS 1