Minggu, 24 Oktober 2021

Persamaan dan Pertidaksamaan Irasional

Nama : Naswa Jovita Ramadhani
Kelas  : X IPS 3
Absen : 22

Persamaan dan Pertidaksamaan Rasional dan Irasional

Persamaan irasional adalah persamaan yang variabelnya berada di bawah tanda akar dan tidak dapat ditarik keluar tanda akar. Untuk semesta bilangan real, persamaan irasional terdefinisi jika komponen yang memuat variabel di bawah tanda akar bernilai lebih dari atau sama dengan nol.

Contoh soal persamaan irasional

Contoh soal 1

Tentukan nilai x yang memenuhi persamaan irasional  x – 1   = x – 3

Penyelesaian soal

Untuk menjawab soal 1 kita tentukan dahulu syarat agar persamaan irasional berlaku yaitu:

  • x – 1 ≥ 0 atau x ≥ 1.
  • x – 3 ≥0 atau x ≥ 3.

Ambil syarat yang terbesar sehingga syarat yang berlaku pada persamaan irasional soal nomor 1 adalah x ≥ 3.

Selanjutnya kita hilangkan tanda akar dengan cara mengkuadratkan kedua ruas persamaan seperti dibawah ini:

Contoh soal persamaan irasional

Contoh soal 1

Tentukan nilai x yang memenuhi persamaan irasional  x – 1   = x – 3

Penyelesaian soal

Untuk menjawab soal 1 kita tentukan dahulu syarat agar persamaan irasional berlaku yaitu:

  • x – 1 ≥ 0 atau x ≥ 1.
  • x – 3 ≥0 atau x ≥ 3.

Ambil syarat yang terbesar sehingga syarat yang berlaku pada persamaan irasional soal nomor 1 adalah x ≥ 3.

Selanjutnya kita hilangkan tanda akar dengan cara mengkuadratkan kedua ruas persamaan seperti dibawah ini:

  • ( √ x – 1 )2 = (x – 3)2
  • (x – 1) = x2 – 6x + 9
  • x2 – 6x – x + 9 + 1 = 0
  • x2 – 7x + 10 = 0
  • (x – 2) (x – 5) = 0
  • x = 2 atau x = 5

Karena syarat yang berlaku pada persamaan nomor 1 adalah x ≥ 3 maka nilai x yang memenuhi adalah x = 5. Jadi soal nomor 1 jawabannya adalah x = 5.

Untuk memeriksa apakah jawaban ini benar atau salah maka caranya cukup mudah yaitu dengan subtitusi x = 5 ke persamaan irasional nomor 1:

  •  x – 1 = x – 3
  •  5 – 1 = 5 – 3
  •  4 = 2
  • 2 = 2

Kita lihat jawabannya sesuai.

Jika x = 2 kita subtitusi ke persamaan maka hasilnya sebagai berikut:

  •  2 – 1 = 2 – 3
  • 1 = – 1.

Kita lihat hasilnya tidak sesuai.


Contoh soal 2

Tentukan nilai x yang memenuhi persamaan irasional  x2 – 9    x + 3   .

Penyelesaian soal

Sama seperti nomor 1, kita tentukan dahulu syarat persamaan irasional yaitu:

  • x2 – 9 ≥ 0 atau x2 ≥ 9 → x ≤ -3 atau x ≥ 3.
  • x + 3 ≥ 0 atau x ≥ -3.

Kita lihat syarat pertama x ≤ -3 dan yang kedua x ≥ -3 jadi syarat yang berlaku adalah x = -3 dan x ≥ 3.

Setelah itu kita kuadratkan kedua ruas persamaan irasional sehingga didapat:

  • ( x2 – 9 )2 = ( √ x + 3 )2.
  • x2 – 9 = x + 3
  • x2 – x – 9 – 3 = 0
  • x2 -x – 12 = 0
  • (x – 4) (x + 3) = 0
  • x = 4 atau x = -3

Berdasarkan syarat kedua nilai x memenuhi sehingga jawaban soal ini adalah x = – 3 dan x = 4.

Contoh soal pertidaksamaan irasional

Contoh soal 1

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  x – 5   < 2.

Penyelesaian soal

Untuk menjawab soal ini kita tentukan terlebih dahulu syarat agar pertidaksamaan irasional berlaku yaitu:

  • x – 5 ≥ 0
  • x ≥ 5

Selanjutnya kita kuadratkan kedua ruas pertidaksamaan irasional sehingga didapat:

  • ( x – 5 )2 < 22.
  • x – 5 < 4
  • x < 4 + 5 atau x < 9

Lalu kita buat garis bilangan untuk menentukan irisan antara syarat x ≥ 5 dan x < 9.

Irisan pertidaksamaan irasional nomor 1

Berdasarkan gambar diatas maka himpunan pertidaksamaan irasional nomor 1 adalah 5 ≤ x < 9.


Contoh soal 2

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  x – 1   > 2

Penyelesaian soal

Syarat yang berlaku pada pertidaksamaan irasional diatas sebagai berikut:

  • x – 1 ≥ 0.
  • x ≥ 1.

Kemudian kita kuadratkan pertidaksamaan diatas sehingga didapat:

  • ( √ x – 1 )2 > 22
  • x – 1 > 4
  • x > 4 + 1
  • x > 5

Jadi himpunan penyelesaian pertidaksamaan ini adalah x > 5.


Contoh soal 3

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  16 – x2   ≤ x + 4.

Penyelesaian soal

Syarat pertidaksamaan irasional:

  • 16 – x2 ≥ 0.
  • x2 – 16 ≤ 0.
  • (x – 4)(x + 4) ≤ 0.
  • x = 4 dan x = -4
  • -4 ≤ x ≤ 4

Kemudian kita kuadratkan pertidaksamaan seperti dibawah ini:

  • ( √ 16 – x2 )2 ≤ (x + 4)2
  • 16 – x2 ≤ x2 + 8x + 16
  • 16 – x2 – x2 – 8x – 16 ≤ 0
  • -2x2 – 8x ≤ 0
  • 2x2 + 8x > 0
  • 2x (x + 4) > 0
  • x ≤ – 4 dan x ≥ 0

Lalu kita buat garis bilangan antara syarat dengan hasil diatas sebagai berikut:

Irisan pertidaksamaan irasional nomor 3

Jadi berdasarkan gambar diatas maka himpunan penyelesaian soal nomor 2 adalah x = -4 dan 0 ≤ x ≤ 4.


Contoh soal 4

Tentukan himpunan penyelesaian dari pertidaksamaan  2x – 1   <  x + 2  .

Penyelesaian soal

Syarat pertidaksamaan berlaku:

  • 2x – 1 ≥ 0 atau x ≥ 1/2.
  • x + 2 ≥ 0 atau x ≥ – 2.

Kuadratkan kedua ruas pertidaksamaan sehingga didapat:

  • ( √ 2x – 1 )2 < ( √ x + 2 )2
  • 2x – 1 < x + 2
  • 2x – x < 2 + 1
  • x < 3
irisan pertidaksamaan irasional nomor 4

Berdasarkan gambar diatas maka himpunan penyelesaian soal nomor 4 adalah 1/2 ≤ x < 3. 

       • ( √ x – 1 )2 = (x – 3)2

  • (x – 1) = x2 – 6x + 9
  • x2 – 6x – x + 9 + 1 = 0
  • x2 – 7x + 10 = 0
  • (x – 2) (x – 5) = 0
  • x = 2 atau x = 5

Karena syarat yang berlaku pada persamaan nomor 1 adalah x ≥ 3 maka nilai x yang memenuhi adalah x = 5. Jadi soal nomor 1 jawabannya adalah x = 5.

Untuk memeriksa apakah jawaban ini benar atau salah maka caranya cukup mudah yaitu dengan subtitusi x = 5 ke persamaan irasional nomor 1:

  •  x – 1 = x – 3
  •  5 – 1 = 5 – 3
  •  4 = 2
  • 2 = 2

Kita lihat jawabannya sesuai.

Jika x = 2 kita subtitusi ke persamaan maka hasilnya sebagai berikut:

  •  2 – 1 = 2 – 3
  • 1 = – 1.

Kita lihat hasilnya tidak sesuai.


Contoh soal 2

Tentukan nilai x yang memenuhi persamaan irasional  x2 – 9    x + 3   .

Penyelesaian soal

Sama seperti nomor 1, kita tentukan dahulu syarat persamaan irasional yaitu:

  • x2 – 9 ≥ 0 atau x2 ≥ 9 → x ≤ -3 atau x ≥ 3.
  • x + 3 ≥ 0 atau x ≥ -3.

Kita lihat syarat pertama x ≤ -3 dan yang kedua x ≥ -3 jadi syarat yang berlaku adalah x = -3 dan x ≥ 3.

Setelah itu kita kuadratkan kedua ruas persamaan irasional sehingga didapat:

  • ( x2 – 9 )2 = ( √ x + 3 )2.
  • x2 – 9 = x + 3
  • x2 – x – 9 – 3 = 0
  • x2 -x – 12 = 0
  • (x – 4) (x + 3) = 0
  • x = 4 atau x = -3

Berdasarkan syarat kedua nilai x memenuhi sehingga jawaban soal ini adalah x = – 3 dan x = 4.

Contoh soal pertidaksamaan irasional

Contoh soal 1

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  x – 5   < 2.

Penyelesaian soal

Untuk menjawab soal ini kita tentukan terlebih dahulu syarat agar pertidaksamaan irasional berlaku yaitu:

  • x – 5 ≥ 0
  • x ≥ 5

Selanjutnya kita kuadratkan kedua ruas pertidaksamaan irasional sehingga didapat:

  • ( x – 5 )2 < 22.
  • x – 5 < 4
  • x < 4 + 5 atau x < 9

Lalu kita buat garis bilangan untuk menentukan irisan antara syarat x ≥ 5 dan x < 9.

Irisan pertidaksamaan irasional nomor 1

Berdasarkan gambar diatas maka himpunan pertidaksamaan irasional nomor 1 adalah 5 ≤ x < 9.


Contoh soal 2

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  x – 1   > 2

Penyelesaian soal

Syarat yang berlaku pada pertidaksamaan irasional diatas sebagai berikut:

  • x – 1 ≥ 0.
  • x ≥ 1.

Kemudian kita kuadratkan pertidaksamaan diatas sehingga didapat:

  • ( √ x – 1 )2 > 22
  • x – 1 > 4
  • x > 4 + 1
  • x > 5

Jadi himpunan penyelesaian pertidaksamaan ini adalah x > 5.


Contoh soal 3

Tentukan himpunan penyelesaian dari pertidaksamaan irasional  16 – x2   ≤ x + 4.

Penyelesaian soal

Syarat pertidaksamaan irasional:

  • 16 – x2 ≥ 0.
  • x2 – 16 ≤ 0.
  • (x – 4)(x + 4) ≤ 0.
  • x = 4 dan x = -4
  • -4 ≤ x ≤ 4

Kemudian kita kuadratkan pertidaksamaan seperti dibawah ini:

  • ( √ 16 – x2 )2 ≤ (x + 4)2
  • 16 – x2 ≤ x2 + 8x + 16
  • 16 – x2 – x2 – 8x – 16 ≤ 0
  • -2x2 – 8x ≤ 0
  • 2x2 + 8x > 0
  • 2x (x + 4) > 0
  • x ≤ – 4 dan x ≥ 0

Lalu kita buat garis bilangan antara syarat dengan hasil diatas sebagai berikut:

Irisan pertidaksamaan irasional nomor 3

Jadi berdasarkan gambar diatas maka himpunan penyelesaian soal nomor 2 adalah x = -4 dan 0 ≤ x ≤ 4.


Contoh soal 4

Tentukan himpunan penyelesaian dari pertidaksamaan  2x – 1   <  x + 2  .

Penyelesaian soal

Syarat pertidaksamaan berlaku:

  • 2x – 1 ≥ 0 atau x ≥ 1/2.
  • x + 2 ≥ 0 atau x ≥ – 2.

Kuadratkan kedua ruas pertidaksamaan sehingga didapat:

  • ( √ 2x – 1 )2 < ( √ x + 2 )2
  • 2x – 1 < x + 2
  • 2x – x < 2 + 1
  • x < 3
irisan pertidaksamaan irasional nomor 4

Berdasarkan gambar diatas maka himpunan penyelesaian soal nomor 4 adalah 1/2 ≤ x < 3.

Remedial PAS

 Naswa Jovita Ramadhani XI IPS 1